cursos de informatica montagem e manutenção de computadores 3

Defeitos nos componentes

É relativamente comum que peças venham com problemas, seja por defeito de fabricação, seja por danos causados pelo transporte ou manuseio. Em muitos casos a peça simplesmente não funciona, enquanto em outros apresenta problemas de estabilidade ou erros diversos. Não confie que um componente está bom simplesmente porque você acabou de tirá-lo da caixa; sempre procure verificar e testar tudo.
Módulos de memória, por exemplo, podem ser facilmente danificados por eletricidade estática quando manuseados. Como um módulo é composto por 8 ou 16 chips e cada um possui vários milhões de transistores, o dano costuma ser localizado, afetando apenas um conjunto de células adjacentes. Ao usar o módulo, o sistema pode funcionar de forma normal (sobretudo se a área danificada estiver próxima dos últimos endereços lógicos do módulo), porém, quando o sistema operacional ou os programas acessarem a área danificada, você verá erros ou travamentos.
Um programa de teste de memória, como o memtest, testa individualmente cada uma das células, indicando até mesmo problemas que aparecem apenas em determinadas situações. Os pentes de memória podem ser danificados também por picos de tensão (que a fonte de alimentação e os circuitos da placa-mãe não sejam capazes de atenuar completamente) ou ainda por causa de problemas na fonte ou nos circuitos de alimentação da placa-mãe.
Normalmente, os pentes de memória são os primeiros componentes a apresentar problemas em micros sem aterramento, ligados em uma rede elétrica precária ou com problemas na fonte de alimentação. No caso dos HDs, temos o aparecimento de badblocks, que podem ser causados por impactos enquanto os discos estão girando (como no caso clássico do usuário batendo na mesa quando um programa trava), por problemas diversos na rede elétrica ou fonte (assim como no caso dos pentes de memória) ou ainda pelo envelhecimento natural da mídia, que começa a se manifestar após alguns anos de uso.
Todo HD moderno possui uma área "extra" chamada de defect map. Ela é usada automaticamente pela placa controladora sempre que setores do disco apresentam erros de leitura. Os setores defeituosos são "remapeados", ou seja, a controladora deixa de usar o setor defeituoso e passa a usar um dos setores da área reservada. Só quando estes setores extra se acabam é que programas de diagnóstico como o scandisk ou o badblocks (no Linux) começam a indicar setores defeituosos no HD, ou seja, a presença de alguns poucos setores defeituosos geralmente indica a presença de um problema mais grave, pois antes deles já vieram muitos outros. Em alguns casos, o problema se estabiliza e o HD pode ser usado por meses sem o aparecimento de novos badblocks, mas em outros o problema pode ser crônico.

Dispositivos USB

Com o aparecimento de todo tipo de carregadores, luzes e gadgets em geral, as portas USB passaram a ser outra fonte de problemas e acidentes. Embora o USB seja um barramento plug-and-play, portas ou periféricos queimados são bem mais comuns do que nas antigas portas seriais e paralelas.
O grande problema é que o USB oferece alimentação elétrica aos componentes. A especificação prevê o fornecimento de 0.5 ampere a 5 volts (o que corresponde a 2.5 watts), mas, para manter uma boa margem de tolerância, os fabricantes oferecem muitas vezes portas capazes de fornecer 1 ampere (ou mais, em alguns casos). É por isso que você muitas vezes consegue que uma gaveta para HDs de notebook, projetada para usar o fornecimento elétrico de duas portas USB, funcione perfeitamente com apenas uma.
Tanta energia favorece o aparecimento de problemas. Um periférico USB mal projetado, ou um circuito ou conector defeituoso, que provoque um curto ao ser encaixado, pode causar uma pequena tragédia, queimando a porta USB ou até mesmo causando danos adicionais na placa-mãe. Normalmente, isso é acompanhado por um travamento do sistema, que leva embora trabalhos não salvos.
Com o barateamento dos pendrives, cartões e leitores e a entrada no mercado de toda sorte de periféricos de baixa qualidade, eles também estão se tornando uma fonte comum de problemas, por isso é sempre bom ser precavido e testar qualquer novo periférico USB em um micro antigo, antes de espetá-lo no seu notebook ou micro de trabalho.


cursos de informatica montagem e manutenção de computadores 2

Instalação do cooler

Outro erro comum é tentar ligar o micro "só pra testar" antes de instalar o cooler. Isso até podia ser feito na época dos micros 486, que dissipavam pouco calor e podiam funcionar por algum tempo sem o cooler, mas em um processador atual isso pode ser desastroso. Como eles dissipam 60, 80 ou até mesmo 90 watts de calor, o processador aquece rápido demais se ligado sem o cooler e queima antes mesmo que o diodo térmico (responsável por desligar o processador quando é atingida uma temperatura limite) tenha chance de fazer seu trabalho. O processo é muito rápido: três ou quatro segundos depois de ligar o micro sem o cooler, você ouve o estalo e o seu processador passa a ser história.
Os processadores mais vulneráveis são os antigos Athlons, Durons e Semprons de 32 bits, que não possuíam o heat-spreader metálico usado a partir do Athlon 64. Os processadores Intel possuem um circuito de desligamento, que faz bem o seu trabalho, geralmente evitando a queima do processador, mas ainda assim é bom não abusar da sorte.
Este é um quadro de um vídeo antigo do Toms Hardware, que mostra um Athlon Palomino torrado depois de passar alguns segundos funcionando sem o cooler:
O estampido instantâneo só se aplica quando você realmente liga o micro sem instalar o cooler, ou quando ele fica mal encaixado, sem fazer contato com o die do processador. Quando o cooler está corretamente instalado, mas você só se esquece de ligá-lo na alimentação, o processo é mais lento, já que o calor é absorvido pelo metal do cooler, fazendo com que o processo de aquecimento seja mais gradual e o processador trave ou desligue durante o processo, sem realmente queimar.
De qualquer forma, é sempre importante verificar tudo antes de ligar o micro. Se houver a mínima chance de algo dar errado, pode ter certeza de que vai dar ;). Não se esqueça também da pasta térmica, que é essencial para a boa dissipação térmica e consequentemente para a vida útil do processador.
Outro problema relativamente comum nos processadores sem o heat-spreader é o processador ser danificado durante a colocação do cooler. Sem a proteção metálica, o que fica em contato com o cooler é o próprio wafer de silício do processador, que é bastante frágil. Ao instalar o cooler em qualquer processador Athlon, Duron, Sempron, Pentium III ou Celeron sem o protetor, redobre os cuidados. Aplique pressão apenas sobre a presilha de encaixe, nunca se apóie ou exerça força diretamente sobre o cooler.
Finalmente, temos um problema mais óbvio, mas que também acontece com frequência, que é encaixar o cooler na direção oposta à saliência do soquete, fazendo com que ele fique "na diagonal", sem fazer contato com a superfície do processador:
Ligar o micro com o cooler instalado desta maneira equivale a ligá-lo sem o cooler.

Smoke Test

Ao montar um micro, o primeiro boot é sempre um momento de tensão, já que uma fonte com problemas de fábrica, ou algum componente mal encaixado pode causar um pequeno desastre. No meio técnico, ligar o micro pela primeira vez é chamado de "smoke test", ou teste da fumaça, em homenagem ao que pode acontecer caso as coisas dêem errado. :)
Hoje em dia, a possibilidade de problemas graves acontecerem por causa de problemas de montagem é relativamente pequena, pois os conectores são todos projetados de forma que uma coisa não encaixe no lugar da outra. Desde que você não deixe nenhuma placa mal encaixada (com os contatos na diagonal, fechando um curto), não ligue um micro com a chave da fonte no 110 em uma tomada 220, nem tente instalar placas com o micro ligado, não existe realmente muita coisa que possa acontecer.
O principal problema é a questão dos encaixes, que é o grande martírio dos distraídos. Na maioria dos casos, tentar ligar o micro com uma placa ou um pente de memória mal encaixado vai apenas fazer com que o boot pare com uma das sequências de bips do BIOS, sem maiores consequências, mas é melhor não contar com a sorte. Algumas combinações podem realmente causar tragédias, sobretudo nas placas AGP ou PCI Express.
Placa AGP mal encaixada: um desastre em potencial
Placa AGP mal encaixada: um desastre em potencial
Antes de ligar, verifique se tudo está corretamente encaixado. Ao usar gabinetes baratos, cheque duplamente, pois irregularidades no gabinete podem deixar as placas fora de posição. Não é incomum que a placa seja empurrada conforme você aperta o parafuso de fixação, por exemplo.
Embora a possibilidade de queimar todo o micro por causa de uma placa mal encaixada ou uma fonte que venha com defeito de fábrica seja relativamente pequena, a lei de murphy existe para nos lembrar que os problemas mais calamitosos podem aparecer onde menos se espera (tem gente que morre escorregando no banheiro...), por isso, cuidado nunca é demais. Afinal, ao montar micros você está mexendo com componentes que podem muitas vezes custar mais do que um mês de salário.
Ao montar micros, o ideal é sempre fazer o teste da fumaça depois de ligar apenas os componentes essenciais (placa-mãe, processador, cooler, memória, teclado e monitor). Se você estiver usando uma placa 3D cara, faça o primeiro teste usando alguma placa de vídeo barata que tiver em mãos. Fazendo isso, se algo calamitoso acontecer, você perde apenas parte dos componentes.
Você pode montar a placa-mãe sobre a própria caixa e o plástico antiestático e usar uma chave Philips para ligar a placa, fechando o contato entre os dois polos do conector "Power SW" do painel para os botões do gabinete na placa-mãe:
Se o primeiro boot ocorrer bem, acesse o setup e cheque as tensões da fonte. Aproveite e dê também uma revisada nas configurações, principalmente as relacionadas com o clock e as tensões utilizadas pelo processador. Ao terminar, desligue o micro e vá instalando os demais componentes, um de cada vez, sempre tomando o cuidado de desligar o micro e desconectar a fonte da tomada antes de cada mudança.
Fazendo isso, fica também muito mais fácil detectar problemas. Afinal, se o micro estava funcionando, mas depois de instalar uma placa de captura de vídeo (por exemplo), o monitor fica preto e você passa a ouvir bips de erro, significa que o problema está muito provavelmente relacionado a ela. Se você já tivesse montado todo o micro, teria que começar a testar cada um dos componentes até descobrir o que está errado.

Eletricidade Estática

A eletricidade estática (Electrostatic Discharge, ou ESD) é um risco constante que paira sobre os profissionais de informática. Embora os riscos reais não sejam tão grandes quanto os manuais podem nos levar a crer, a possibilidade de danos a componentes sensíveis realmente existe. Um dos grandes problemas é a falta de informações sobre o tema. Cada técnico parece ter uma opinião diferente e informações folclóricas são propagadas junto com as reais.
As cargas eletrostáticas surgem naturalmente, principalmente devido a atrito com materiais isolantes (carpete, cabelo, lã, fibra de vidro, etc.). A eletricidade se acumula justamente porque você está isolado do solo (por causa do tênis ou carpete, por exemplo) e ela não tem para onde fluir.
Quando você toca em algum objeto metálico, o diferencial elétrico faz com que a eletricidade flua de forma violenta na direção com potencial mais baixo. Dependendo do volume de eletricidade acumulada, a energia pode percorrer até mesmo através de uma camada fina de material isolante ou ar. É por isso que usar luvas de borracha não impede completamente que você danifique componentes com estática. O plástico anti-estático usado em embalagens de eletrônicos tem uma estrutura um pouco diferente do plástico usado em sacolas plásticas comuns, daí o seu nome.
Um exemplo clássico são as nuvens de chuva, que estão separadas do solo por alguns quilômetros de ar. Apesar disso, quando eletricidade suficiente se acumula, surge o raio, uma descarga poderosa o suficiente para vencer a distância. Em ambientes secos, você pode criar um raio em miniatura esfregando uma peça de lã por algum tempo e depois aproximando o dedo de algum objeto metálico, como uma maçaneta. Quando ele estiver bem próximo, você vê uma faísca rápida, que é justamente a descarga eletrostática fluindo do seu corpo para o metal, vencendo a camada de ar que os separa. Nosso corpo é capaz de acumular cargas de milhares de volts. A corrente ("amperagem") é muito baixa, por isso não é suficiente para causar danos a nós ou a outras pessoas, mas é mais do que suficiente para causar descargas capazes de danificar circuitos eletrônicos.
Como disse, as descargas ocorrem justamente por causa do diferencial elétrico entre o seu corpo e os componentes, de forma que para eliminar o problema com descargas eletrostáticas, basta igualar o potencial elétrico de ambos. Existem no mercado as famosas pulseiras anti-estáticas, que possuem um fio de aterramento destinado a eliminar cargas acumuladas no seu corpo. Elas são baratas, geralmente menos de 15 reais, de forma que é sempre bom ter uma. Ao contrário do que muitos acreditam, o fio da pulseira não precisa necessariamente ser ligado ao aterramento, ela também oferece uma boa proteção se ligada ao gabinete do micro ou a alguma peça metálica da carcaça do notebook onde você vai trabalhar.
O objetivo é simplesmente fazer com que o seu corpo e os demais componentes do micro fiquem com o mesmo potencial elétrico, eliminando a possibilidade de ocorrerem descargas. Se preferir, você pode primeiro tocar uma grade metálica (não pintada) antes de conectar a pulseira e começar a trabalhar, mas isso não é realmente necessário.
Pulseira antiestática
Pulseira antiestática
Se você faz parte dos 99% que não usam a pulseira, vamos à segunda linha de prevenção. Ela consiste em não trabalhar sobre pisos de carpete ou usando roupas de lã e sempre tocar uma grade ou outro objeto de metal ligado ao solo antes de abrir o micro, além de tocar o gabinete constantemente enquanto estiver trabalhando. Também não vale ficar esfregando as mãos no cabelo, pois ele tem uma tendência a acumular cargas positivas maior do que a própria lã.
Se as tomadas tiverem aterramento, uma boa coisa a fazer antes de começar a trabalhar é tocar o gabinete com a fonte ainda ligada na tomada. O fio de aterramento é ligado ao corpo da fonte, que por sua vez é parafusada ao gabinete (é por isso que micros ligados em tomadas não-aterradas muitas vezes dão choque). Ao tocar no gabinete, a carga é transferida para ele e o excesso flui através do terra da tomada. Depois disso, você pode desconectar o gabinete da tomada e trabalhar normalmente. Se, por outro lado, as tomadas não são aterradas, não adianta muito fazer isso. O melhor é tocar em uma grade metálica, desligar o gabinete da tomada e cruzar os dedos.
Além de todos os cuidados, soma-se a recomendação de sempre trabalhar manuseando os componentes pela borda, evitando ao máximo tocar os chips e contatos metálicos.


Unidades ssd

As unidades SSD (Solid State Drive ou Unidade de Estado Sólido) são dispositivos de armazenamento de arquivos e programas assim como os discos rígidos, mas utilizam chips de memória flash para armazenar os dados em vez de discos magnéticos. Como os dados são armazenados eletronicamente em vez de magneticamente, as unidades SSD são muito mais rápidas do que os discos rígidos por dois motivos: primeiro, porque não há conversão entre informação magnética e informação eletrônica; segundo, porque não existem partes mecânicas e, portanto, os dados estão disponíveis imediatamente, enquanto que nos discos rígidos você precisa esperar até que as cabeças se movam para a área onde os dados estão armazenados, o que leva algum tempo. Neste tutorial nós mostraremos a você como é uma unidade SSD por dentro e quais são os seus principais componentes.
A propósito, como os dados são armazenados em chips de memória, a unidade SSD não é um disco, o que implica dizer que “disco SSD” está errado”: prefira o termo “unidade SSD”.
Vamos primeiro falar sobre o formato externo. As unidades SSD podem ser encontradas em diferentes tamanhos físicos. Os mais comuns são 2,5” e 1,8”, já que esses são os mesmos tamanhos usados por discos rígidos para notebooks. É importante saber que o primeiro segmento de mercado que os fabricantes de unidades SSD queriam atingir era o mercado de notebooks, não o mercado para micros de mesa, por duas razões principais: as unidades SSD consomem menos energia do que os discos rígidos (esta diferença pode ser irrelevante para um micro de mesa, mas para um usuário usando o notebook  na bateria isto deve ser levado em consideração) e são imunes a impactos (ou seja, você pode balançá-la e derrubá-la no chão que os dados armazenados na unidade SSD continuarão intactos; se você tentar a mesma coisa com um disco rígido poderá danificá-lo e acabar perdendo seus dados).
As unidades SSD podem ainda ser encontradas com diferentes tipos de interface, mas a interface SATA é a mais comum.

Na Figura 1 nós mostramos um exemplo de uma unidade SSD de 2,5” com uma interface SATA, que é o formato mais popular entre as unidades SSD.


Figura 1: SSD de 2,5”.
Vamos agora ver como é uma unidade SSD por dentro.

 Na Figura 2 você pode ver o interior de uma unidade SSD. Existem três componentes principais: memória flash, controlador e buffer. Nós falaremos um pouco sobre esses componentes abaixo.